106 research outputs found

    Subset Labeled LDA for Large-Scale Multi-Label Classification

    Full text link
    Labeled Latent Dirichlet Allocation (LLDA) is an extension of the standard unsupervised Latent Dirichlet Allocation (LDA) algorithm, to address multi-label learning tasks. Previous work has shown it to perform in par with other state-of-the-art multi-label methods. Nonetheless, with increasing label sets sizes LLDA encounters scalability issues. In this work, we introduce Subset LLDA, a simple variant of the standard LLDA algorithm, that not only can effectively scale up to problems with hundreds of thousands of labels but also improves over the LLDA state-of-the-art. We conduct extensive experiments on eight data sets, with label sets sizes ranging from hundreds to hundreds of thousands, comparing our proposed algorithm with the previously proposed LLDA algorithms (Prior--LDA, Dep--LDA), as well as the state of the art in extreme multi-label classification. The results show a steady advantage of our method over the other LLDA algorithms and competitive results compared to the extreme multi-label classification algorithms

    A Divide-and-Conquer Approach to the Summarization of Long Documents

    Full text link
    We present a novel divide-and-conquer method for the neural summarization of long documents. Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into an ensemble of smaller summarization problems. In particular, we break a long document and its summary into multiple source-target pairs, which are used for training a model that learns to summarize each part of the document separately. These partial summaries are then combined in order to produce a final complete summary. With this approach we can decompose the problem of long document summarization into smaller and simpler problems, reducing computational complexity and creating more training examples, which at the same time contain less noise in the target summaries compared to the standard approach. We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance. Our best models achieve results that are on par with the state-of-the-art in two two publicly available datasets of academic articles

    Making Classifier Chains Resilient to Class Imbalance

    Full text link
    Class imbalance is an intrinsic characteristic of multi-label data. Most of the labels in multi-label data sets are associated with a small number of training examples, much smaller compared to the size of the data set. Class imbalance poses a key challenge that plagues most multi-label learning methods. Ensemble of Classifier Chains (ECC), one of the most prominent multi-label learning methods, is no exception to this rule, as each of the binary models it builds is trained from all positive and negative examples of a label. To make ECC resilient to class imbalance, we first couple it with random undersampling. We then present two extensions of this basic approach, where we build a varying number of binary models per label and construct chains of different sizes, in order to improve the exploitation of majority examples with approximately the same computational budget. Experimental results on 16 multi-label datasets demonstrate the effectiveness of the proposed approaches in a variety of evaluation metrics

    Unsupervised Keyphrase Extraction from Scientific Publications

    Full text link
    We propose a novel unsupervised keyphrase extraction approach that filters candidate keywords using outlier detection. It starts by training word embeddings on the target document to capture semantic regularities among the words. It then uses the minimum covariance determinant estimator to model the distribution of non-keyphrase word vectors, under the assumption that these vectors come from the same distribution, indicative of their irrelevance to the semantics expressed by the dimensions of the learned vector representation. Candidate keyphrases only consist of words that are detected as outliers of this dominant distribution. Empirical results show that our approach outperforms state-of-the-art and recent unsupervised keyphrase extraction methods.Comment: author pre-print versio

    Local Word Vectors Guiding Keyphrase Extraction

    Full text link
    Automated keyphrase extraction is a fundamental textual information processing task concerned with the selection of representative phrases from a document that summarize its content. This work presents a novel unsupervised method for keyphrase extraction, whose main innovation is the use of local word embeddings (in particular GloVe vectors), i.e., embeddings trained from the single document under consideration. We argue that such local representation of words and keyphrases are able to accurately capture their semantics in the context of the document they are part of, and therefore can help in improving keyphrase extraction quality. Empirical results offer evidence that indeed local representations lead to better keyphrase extraction results compared to both embeddings trained on very large third corpora or larger corpora consisting of several documents of the same scientific field and to other state-of-the-art unsupervised keyphrase extraction methods.Comment: author pre-print versio

    Structured Summarization of Academic Publications

    Full text link
    We propose SUSIE, a novel summarization method that can work with state-of-the-art summarization models in order to produce structured scientific summaries for academic articles. We also created PMC-SA, a new dataset of academic publications, suitable for the task of structured summarization with neural networks. We apply SUSIE combined with three different summarization models on the new PMC-SA dataset and we show that the proposed method improves the performance of all models by as much as 4 ROUGE points

    Web Robot Detection in Academic Publishing

    Full text link
    Recent industry reports assure the rise of web robots which comprise more than half of the total web traffic. They not only threaten the security, privacy and efficiency of the web but they also distort analytics and metrics, doubting the veracity of the information being promoted. In the academic publishing domain, this can cause articles to be faulty presented as prominent and influential. In this paper, we present our approach on detecting web robots in academic publishing websites. We use different supervised learning algorithms with a variety of characteristics deriving from both the log files of the server and the content served by the website. Our approach relies on the assumption that human users will be interested in specific domains or articles, while web robots crawl a web library incoherently. We experiment with features adopted in previous studies with the addition of novel semantic characteristics which derive after performing a semantic analysis using the Latent Dirichlet Allocation (LDA) algorithm. Our real-world case study shows promising results, pinpointing the significance of semantic features in the web robot detection problem

    Discovering and Exploiting Entailment Relationships in Multi-Label Learning

    Full text link
    This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself

    Multi-Target Regression via Input Space Expansion: Treating Targets as Inputs

    Full text link
    In many practical applications of supervised learning the task involves the prediction of multiple target variables from a common set of input variables. When the prediction targets are binary the task is called multi-label classification, while when the targets are continuous the task is called multi-target regression. In both tasks, target variables often exhibit statistical dependencies and exploiting them in order to improve predictive accuracy is a core challenge. A family of multi-label classification methods address this challenge by building a separate model for each target on an expanded input space where other targets are treated as additional input variables. Despite the success of these methods in the multi-label classification domain, their applicability and effectiveness in multi-target regression has not been studied until now. In this paper, we introduce two new methods for multi-target regression, called Stacked Single-Target and Ensemble of Regressor Chains, by adapting two popular multi-label classification methods of this family. Furthermore, we highlight an inherent problem of these methods - a discrepancy of the values of the additional input variables between training and prediction - and develop extensions that use out-of-sample estimates of the target variables during training in order to tackle this problem. The results of an extensive experimental evaluation carried out on a large and diverse collection of datasets show that, when the discrepancy is appropriately mitigated, the proposed methods attain consistent improvements over the independent regressions baseline. Moreover, two versions of Ensemble of Regression Chains perform significantly better than four state-of-the-art methods including regularization-based multi-task learning methods and a multi-objective random forest approach.Comment: Accepted for publication in Machine Learning journal. This replacement contains major improvements compared to the previous version, including a deeper theoretical and experimental analysis and an extended discussion of related wor

    Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA

    Full text link
    We introduce a novel approach for estimating Latent Dirichlet Allocation (LDA) parameters from collapsed Gibbs samples (CGS), by leveraging the full conditional distributions over the latent variable assignments to efficiently average over multiple samples, for little more computational cost than drawing a single additional collapsed Gibbs sample. Our approach can be understood as adapting the soft clustering methodology of Collapsed Variational Bayes (CVB0) to CGS parameter estimation, in order to get the best of both techniques. Our estimators can straightforwardly be applied to the output of any existing implementation of CGS, including modern accelerated variants. We perform extensive empirical comparisons of our estimators with those of standard collapsed inference algorithms on real-world data for both unsupervised LDA and Prior-LDA, a supervised variant of LDA for multi-label classification. Our results show a consistent advantage of our approach over traditional CGS under all experimental conditions, and over CVB0 inference in the majority of conditions. More broadly, our results highlight the importance of averaging over multiple samples in LDA parameter estimation, and the use of efficient computational techniques to do so
    • …
    corecore